Easy to show analysis results by upset plot

irGSEA.upset(
  object = NULL,
  method = "RRA",
  upset.width = 13,
  upset.height = 7,
  title.size = 10,
  text.size = 9,
  cluster.color = NULL,
  bar.color = "black",
  cluster.levels = NULL,
  mode = "distinct",
  set.size = 1,
  set.degree = NULL,
  table.generate = F,
  ...
)

Arguments

object

A list after perform irGSEA.integrate

method

A character. It should be one of the followling : AUCell, UCell, singscore, ssgsea or RRA. Default RRA.

upset.width

Width of the whole upset plot. Default 13.

upset.height

Height of the whole upset plot. Default 7.

title.size

The fointsize of rownames. Default 10.

text.size

The fointsize of rownames. Default 9.

cluster.color

A vector. Default "ggsci::pal_igv()(the number of colnames of enrichment score matrix)" when it is set to NULL.

bar.color

A character. Default "black" when it is set to NULL.

cluster.levels

A vector equal to the number of clusters.

mode

A character. It should be one of the followling : distinct, intersect, or union. Default distinct. It represents the mode for forming the combination set. see Mode section https://jokergoo.github.io/ComplexHeatmap-reference/book/upset-plot.html for details.

set.size

The minimal combination set size. Default 1.

set.degree

A vector. Show all combination sets when it set to NULL. It would show different combination set when it is set to different number. For example, it only show the interactions among two cluster or three cluster when it's set to 2 or 3.

table.generate

Deault FALSE. It will output a list including all combination sets and their gene sets when it set to TRUE.

...

More parameters pass to UpSet

Value

upset plot or list

Examples

if (FALSE) {
# load PBMC dataset by R package SeuratData
library(Seurat)
library(SeuratData)
# download 3k PBMCs from 10X Genomics
InstallData("pbmc3k")
data("pbmc3k.final")
pbmc3k.final <- SeuratObject::UpdateSeuratObject(pbmc3k.final)

# Seurat object
pbmc3k.final <- irGSEA.score(object = pbmc3k.final, assay = "RNA",
slot = "data", msigdb = T, species = "Homo sapiens",
category = "H", geneid = "symbol",
method = c("AUCell", "UCell", "singscore", "ssgsea"), kcdf = 'Gaussian')

# Integrated analysis
result.dge <- irGSEA.integrate(object = pbmc3k.final,
group.by = "seurat_annotations", metadata = NULL, col.name = NULL,
method = c("AUCell","UCell","singscore","ssgsea"))

irGSEA.upset.plot1 <- irGSEA.upset(object = result.dge, method = "RRA")
irGSEA.upset.plot2 <- irGSEA.upset(object = result.dge, method = "ssgsea")

}