Easy to show analysis results by heatmap plot
irGSEA.heatmap(
object = NULL,
method = "RRA",
top = 50,
show.geneset = NULL,
cluster_rows = T,
significance.color = NULL,
cluster.color = NULL,
direction.color = NULL,
rowname.fointsize = 7,
heatmap.width = 17,
heatmap.heigh = 13,
cluster.levels = NULL,
...
)
A list after perform irGSEA.integrate
A character. It should be one of the followling : AUCell, UCell, singscore, ssgsea or RRA. Default RRA.
The top gene sets. Default 50.
A vector including special gene sets. Default NULL.
Whether to make cluster on rows. Defaul True.
A vector. Default "c("#D0DFE6FF","#f87669")" when it is set to NULL.
A vector. Default "ggsci::pal_igv()(the number of colnames of enrichment score matrix)" when it is set to NULL.
A vector. Default "c("#4575B4","#D73027")" when it is set to NULL.
The fointsize of rownames. Default 7.
Width of the whole heatmap (including heatmap components), default 17.
Height of the whole heatmap (including heatmap components), default 13.
A vector equal to the number of clusters.
More parameters pass to Heatmap
heatmap plot
if (FALSE) {
# load PBMC dataset by R package SeuratData
library(Seurat)
library(SeuratData)
# download 3k PBMCs from 10X Genomics
InstallData("pbmc3k")
data("pbmc3k.final")
pbmc3k.final <- SeuratObject::UpdateSeuratObject(pbmc3k.final)
# Seurat object
pbmc3k.final <- irGSEA.score(object = pbmc3k.final, assay = "RNA",
slot = "data", msigdb = T, species = "Homo sapiens",
category = "H", geneid = "symbol",
method = c("AUCell", "UCell", "singscore", "ssgsea"), kcdf = 'Gaussian')
# Integrated analysis
result.dge <- irGSEA.integrate(object = pbmc3k.final,
group.by = "seurat_annotations", metadata = NULL, col.name = NULL,
method = c("AUCell","UCell","singscore","ssgsea"))
irGSEA.heatmap.plot1 <- irGSEA.heatmap(object = result.dge, method = "RRA",
top = 50, show.geneset = NULL)
irGSEA.heatmap.plot2 <- irGSEA.heatmap(object = result.dge, method = "ssgsea",
top = 50, show.geneset = NULL)
}