Easy to the data distribution by density scatter plot
irGSEA.density.scatterplot(
object = NULL,
method = NULL,
show.geneset = NULL,
reduction = "umap",
...
)
A Seurat after perform irGSEA.score
A character. It should be one of the followling : AUCell, UCell, singscore, ssgsea.
A character. It should be one of the rownames of enrichment score matrix.
A character. It can not be empty and should be calculated in advance.
More parameters pass to plot_density
density scatter plot
if (FALSE) {
# load PBMC dataset by R package SeuratData
library(Seurat)
library(SeuratData)
# download 3k PBMCs from 10X Genomics
InstallData("pbmc3k")
data("pbmc3k.final")
pbmc3k.final <- SeuratObject::UpdateSeuratObject(pbmc3k.final)
# Seurat object
pbmc3k.final <- irGSEA.score(object = pbmc3k.final, assay = "RNA",
slot = "data", msigdb = T, species = "Homo sapiens",
category = "H", geneid = "symbol",
method = c("AUCell", "UCell", "singscore", "ssgsea"), kcdf = 'Gaussian')
irGSEA.density.scatterplot1 <- irGSEA.density.scatterplot(object = pbmc3k.final,
method = "UCell", show.geneset = "HALLMARK-INFLAMMATORY-RESPONSE",
reduction = "umap")
irGSEA.density.scatterplot2 <- irGSEA.density.scatterplot(object = pbmc3k.final,
method = "ssgsea", show.geneset = "HALLMARK-IL6-JAK-STAT3-SIGNALING",
reduction = "umap")
}